32 research outputs found

    Neural-inspired sensors enable sparse, efficient classification of spatiotemporal data

    Full text link
    Sparse sensor placement is a central challenge in the efficient characterization of complex systems when the cost of acquiring and processing data is high. Leading sparse sensing methods typically exploit either spatial or temporal correlations, but rarely both. This work introduces a new sparse sensor optimization that is designed to leverage the rich spatiotemporal coherence exhibited by many systems. Our approach is inspired by the remarkable performance of flying insects, which use a few embedded strain-sensitive neurons to achieve rapid and robust flight control despite large gust disturbances. Specifically, we draw on nature to identify targeted neural-inspired sensors on a flapping wing to detect body rotation. This task is particularly challenging as the rotational twisting mode is three orders-of-magnitude smaller than the flapping modes. We show that nonlinear filtering in time, built to mimic strain-sensitive neurons, is essential to detect rotation, whereas instantaneous measurements fail. Optimized sparse sensor placement results in efficient classification with approximately ten sensors, achieving the same accuracy and noise robustness as full measurements consisting of hundreds of sensors. Sparse sensing with neural inspired encoding establishes a new paradigm in hyper-efficient, embodied sensing of spatiotemporal data and sheds light on principles of biological sensing for agile flight control.Comment: 21 pages, 19 figure

    Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control

    Full text link
    In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace. The Koopman operator is an infinite-dimensional linear operator that evolves observable functions of the state-space of a dynamical system [Koopman 1931, PNAS]. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems [Williams et al. 2015, JNLS]. Choosing nonlinear observable functions to form an invariant subspace where it is possible to obtain linear models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis using a new algorithm to determine terms in a dynamical system by sparse regression of the data in a nonlinear function space [Brunton et al. 2015, arxiv]; we show how this algorithm is related to DMD. Finally, we demonstrate how to design optimal control laws for nonlinear systems using techniques from linear optimal control on Koopman invariant subspaces.Comment: 20 pages, 5 figures, 2 code

    Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control

    Full text link
    Sparse model identification enables the discovery of nonlinear dynamical systems purely from data; however, this approach is sensitive to noise, especially in the low-data limit. In this work, we leverage the statistical approach of bootstrap aggregating (bagging) to robustify the sparse identification of nonlinear dynamics (SINDy) algorithm. First, an ensemble of SINDy models is identified from subsets of limited and noisy data. The aggregate model statistics are then used to produce inclusion probabilities of the candidate functions, which enables uncertainty quantification and probabilistic forecasts. We apply this ensemble-SINDy (E-SINDy) algorithm to several synthetic and real-world data sets and demonstrate substantial improvements to the accuracy and robustness of model discovery from extremely noisy and limited data. For example, E-SINDy uncovers partial differential equations models from data with more than twice as much measurement noise as has been previously reported. Similarly, E-SINDy learns the Lotka Volterra dynamics from remarkably limited data of yearly lynx and hare pelts collected from 1900-1920. E-SINDy is computationally efficient, with similar scaling as standard SINDy. Finally, we show that ensemble statistics from E-SINDy can be exploited for active learning and improved model predictive control

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings
    corecore